Only U is in my heart!
I will be right here waiting for you.

自适应滤波理论发展过程

早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器已成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。

在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。

Widrow B.等在1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而达到最佳状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多象维纳滤波器那样简单,而滤波性能几乎如卡尔曼滤波器一样好。因此,近十几年来,自适应滤波理论和方法得到了迅速发展。

图1-1描述的是一个通用的自适应滤波估计问题,图中离散时间线性系统表示一个可编程滤波器,它的冲激响应为h(n),或称其为滤波参数;自适应滤波器输出信号为y(n)所期望的响应信号为d(n),误差信号e(n)为d(n)与y(n)之差。这里,期望响应信号d(n)是根据不同用途来选择的,自适应滤波器的输出信号y(n)是对期望响应信号d(n)进行估计的,滤波器参数受误差信号e(n)的控制并自动调整,使y(n)的估计值y(n)超于所期望的响应d(n)。因此,自适应滤波器与普通滤波器不同,它的冲激响应或滤波器参数是随外部环境的变化而改变的,经过一段自动调节的收敛时间达到最佳滤波的要求。但是,自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量值,按照一定准则修改滤波器参量,以使它本身能有效地跟踪外部环境的变化。通常,自适应滤波器是线性的,因而也是一种线性移变滤波器。当然,它也可推广到自适应非线性滤波器。

wps_clip_image-11504

图1-1自适应滤波原理框图

在图1-1中,离散时间线性系统可以分为两类基本结构,其中一类为非递归型横向结构的数字滤波器,它具有有限的记忆,因而称之为有限冲激响应(FIR)系统,即自适应FIR滤波器;另一类为递归型数字滤波器结构,理论上,它具有无限的记忆,因而称之为无限冲激响应((IIR)系统,即自适应IIR滤波器。对于上述两类自适应滤波器,还可以根据不同的滤波理论和算法,分为结构不同的自适应滤波器,它们的滤波性能也不完全相同。本论文主要研究的是自适应IIR滤波器。

赞(0) 打赏
未经允许不得转载:Onlyisu » 自适应滤波理论发展过程

相关推荐

  • 暂无文章

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

大前端WP主题 更专业 更方便

联系我们联系我们

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏